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Abstract—Representing information evolving in time in ontolo-
gies is a difficult problem to deal with. Temporal relations are in
fact ternary (i.e., properties of objects that change in time involve
also a temporal value in addition to the object and the subject)
and cannot be handled directly by OWL. The standard solution
to this problem is to introduce new (intermediate) classes into
the ontology and map all temporal relations to a set of binary
ones with these classes. Nevertheless, ontologies then become
complicated and difficult to handle by standard editors such as
Protégé (e.g., property restrictions of temporal classes might refer
to the new classes rather than to the classes on which they were
meant to be defined). It also requires that the user be familiar
with the precipitabilities of the temporal representation. This
is exactly the problem this work is dealing with. We introduce
CHRONOS, a plug-in for Protégé OWL editor that facilitates
creation and editing of temporal ontologies in OWL. CHRONOS
enables handling of temporal relations in Protégé the same way
static ones are handled. It is implemented as a tab plug-in for
Protégé and can be downloaded from the Web.

I. INTRODUCTION

Ontologies offer the means for representing high level
concepts, their properties and interrelationships. Dynamic or
temporal ontologies, in addition, enable representation of
time evolving information in ontologies. Representation of
dynamic features calls for mechanisms that allow uniform
representation of the notions of time (and of properties varying
in time) within a single ontology. OWL-Time1 provides a
vocabulary for expressing the most needed time-related facts.
Apart from language constructs for the representation of time
in ontologies, there is still a need for mechanisms for the rep-
resentation of the evolution of concepts (e.g., events) in time.
Existing methods for achieving this include, among others,
temporal description logics [1], concrete domains [2], property
labeling [3], versioning [4], named graphs [5], reification, N-
ary relations2 and the 4D-fluents (perdurantist) approach [6].
All result in complicated ontologies compared with their static
counterparts where all relations do not change in time.

Representing temporal information in ontologies resorts to
OWL. However, the syntactic restriction of OWL to binary
relations complicates representation of temporal properties
since, a property holding for a specific time instant or interval

1http://www.w3.org/TR/owl-time/
2http://www.w3.org/TR/swbp-n-aryRelations/

is a relation involving three objects (an object, a subject and
a time instant or interval). Binary relations simply connect
two instances (e.g., the employee with the company) without
any temporal information. Nevertheless, a representation using
OWL is feasible, although complicated. In addition, reasoning
over temporal information in OWL, as well as maintaining
property and data semantics (e.g., cardinality restrictions) are
also issues that need to be handled. SOWL [7] handles all
these issues.

Ontology editors, such as Protégé3 are particularly well
suited for crafting (creating, editing) static ontologies with
binary relations but have no means for dealing with temporal
entities and temporal (ternary) relations. As it is common in
all known approaches for representing dynamic concepts (such
as the N-ary relations or the 4D-fluents approach referred
to above), ternary relationships are decomposed into sets of
binary relations. Properties holding between classes now refer
to properties between classes introduced by the temporal
representation. This not only complicates the ontology but
also, requires that the user be familiar with the peculiarities
of the temporal representation method adopted.

Protégé is probably the most versatile and popular ontology
editor, it is free, open-source, supports creation, visualiza-
tion and manipulation of ontologies, as well as exporting
ontologies in various representation formats including OWL.
Furthermore, Protégé can be extended by means of a plug-
in architecture and a Java-based Application Programming
Interface (API) for building tools and applications.

We present CHRONOS a Tab widget plug-in for the Protégé
editor that facilitates handling of temporal ontologies such as,
the definition of temporal classes and of temporal properties.
It is portable and easy to use (i.e., handles temporal ontologies
similarly to the way static ontologies are created and handled
in Protégé) and does not require the user to be familiar with the
peculiarities of the underlying representation model of tempo-
ral information is ontologies. The representation model used
is the N-ary relations model. Temporal ontologies, can still
be exported in OWL and handled (i.e., viewed or modified)
by standard OWL editors (although much more difficult to
handle in this case). CHRONOS interface is consistent with the

3http://protege.stanford.edu/



layout of the default Protégé Tabs. We have made CHRONOS
available on the Web4.

CHRONOS supports adding restrictions on temporal proper-
ties (e.g., “an employee can’t work for two different companies
at the same time”), classes (e.g., “a company cannot employ
more than 20 employees at the same time”) and on individuals.
Notice that, if there are inconsistencies within a set of defined
temporal relations, normally, these will not be detected by
a conventional OWL reasoner (i.e., a reasoner for static
ontologies such as Pellet in Protégé) or, an OWL reasoner
might not compute all temporal inferences. The problem is
that property restrictions defined on temporal classes now refer
to the new classes introduced by the N-ary relations model
rather than to the classes on which they were meant to be
defined. Dealing with such issues calls for reasoner capable
of handling temporal information in OWL with the N-ary
relations model, such as SOWL [8]. SOWL is implemented in
SWRL, guarantees soundness, completeness and tractability of
reasoning. Any temporal ontology in CHRONOS is handled
by Pellet in Protégé and the SOWL reasoner.

Temporal relations in CHRONOS can also be defined as
qualitative (i.e., using lexical terms such as “before”, “after”
etc.) or as quantitative (i.e., relations described using numerical
values such as “10min after” etc.). The motivation for using a
qualitative approach is that it is considered to be closer to the
way humans represent and reason about commonsense knowl-
edge. Another motivation is that it is possible to deal with
incomplete knowledge. The accompanying SOWL reasoner is
also capable of handling qualitative temporal information.

Background knowledge and related research are discussed
in Sec. II. CHRONOS is discussed In Sec. III. Dealing
with cardinality constraints and property restrictions requires
particular attention and is discussed separately in Sec. IV.
CHRONOS implementation is discussed in Sec. V followed
by conclusions and issues for further research in Sec. VI.

II. BACKGROUND AND RELATED WORK

In the following, we discuss on models for representing
information evolving with time in ontologies.

Temporal Description Logics (TDLs) [1] extend standard
description logics (DLs) that form the basis for semantic
Web standards with additional constructs such as “always in
the past”, “sometime in the future”. TDLs offer additional
expressive capabilities over non temporal DLs but they require
extending OWL syntax and semantics with the additional
temporal constructs. Representing information concerning spe-
cific time instants requires support for concrete domains.
Concrete Domains [2] relies on the idea of introducing new
datatypes and operators in OWL. Notice though, in our work
we are opted for an approach that relies on existing OWL
standards and tools. This is a basic design decision in our
work. TOWL [9] is an approach combining 4D-fluents with
concrete domains but didn’t support qualitative relations, path
consistency checking (as this work does) and is not compatible

4http://www.intelligence.tuc.gr/prototypes.php

with existing OWL editing, querying and reasoning tools (e.g.,
Protege, Pellet, SPARQL).

Versioning [4] suggests that the ontology has different
versions as time evolves. When a change takes place, a new
version is created. Versioning suffers from several disadvan-
tages: (a) changes even on single attributes require that a new
version of the ontology be created leading to information re-
dundancy, (b) searching for events requires exhaustive searches
in multiple versions of the ontology, (c) it is not clear how
the relation between evolving classes is represented. Named
Graphs [5] represent the temporal context of a property by
inclusion of a triple representing the property in a named
graph (i.e., a subgraph into the RDF graph of the ontology
specified by a distinct name). The default (i.e., main) RDF
graph contains definitions of interval start and end points for
each named graph, so that a temporal property is represented
by the start and end points corresponding to the temporal
interval that the property holds. Named graphs are neither part
of the OWL specification5 (i.e., there are not OWL constructs
translated into named graphs) nor they are supported by OWL
reasoners.

Fig. 1: Example of Reification.

Reification is a general purpose technique for representing
n-ary relations using a language such as OWL that permits
only binary relations. Specifically, an n-ary relation is rep-
resented as a new object that has all the arguments of the
n-ary relation as objects of properties. For example, if the
relation R holds between objects A and B at time t, this
is expressed as R(A,B,t). In OWL this is expressed as a
new object with R,A,B and t being objects of properties.
Fig. 1 illustrates the relation WorksFor(Employee, Company,
TimeInterval) representing the fact that an employee works
for a company during a time interval. The extra class “Rei-
fiedRelation” is created having all the attributes of the relation
as objects of properties. Reification suffers mainly from two
disadvantages: (a) a new object is created whenever a temporal
relation has to be represented (this problem is common to
all approaches based on OWL) and (b) offers limited OWL
reasoning capabilities [6]. Because relation R is represented as
the object of a property, OWL semantics over properties (e.g.,
inverse properties) are no longer applicable (i.e., the properties
of a relation are no longer associated directly with the relation
itself).

The 4D-fluent (perdurantist) approach [6] shows how tem-
poral information and the evolution of temporal concepts can
be represented in OWL. To add the time dimension to an

5http://www.w3.org/TR/owl2-syntax/



Fig. 2: Example of 4D-fluents representation.

ontology, classes TimeSlice and TimeInterval with properties
TimeSliceOf and TimeInterval are introduced. Properties hav-
ing a temporal dimension are called fluent properties and con-
nect instances of class TimeSlice (e.g., properties “employs”
and “worksFor” in Fig. 2). Dotted arrows in Fig. 2 represent
object properties while, solid lines represent “isA” relations.
Class TimeSlice is the domain class for entities representing
temporal parts (i.e., “time slices”) and class TimeInterval is
the domain class of time intervals. Time instances and time
intervals are represented as instances of a TimeInterval class.
A temporal property does not hold between the static entities
but between their temporal parts. The time slices of an entity
have a specific lifetime, that is the time interval of the relation
they participate in.

Fig. 3: Example of N-ary Relations representation.

The N-ary relations approach suggests representing an N-
ary relation as two properties each related with a new object
(rather than as the object of a property, as reification does).
This approach requires only one additional object for every
temporal relation. A temporal property between two individ-
uals (e.g. “Employee works for Company”) holds as long as
that event endures. The N-ary property is represented as a class
rather than as a property. Instances of such classes correspond
to instances of the relation. Additional properties introduce
additional binary links to each argument of the relation. For
properties that change in time, their domains and ranges have
to be adjusted taking into account the classes of intermediate
objects representing the relation (for example the worksFor
relation in Fig. 3 is no longer a relation having as object an
individual of class Company and subject of class Employee
as they are now related to the new object EmploymentEvent).
The new domain is the union of the old domain with the class
that represents the N-ary property (Event class). Likewise, the
new range is a union of the old one with the Event class.

A. SOWL

SOWL [7] is an ontology framework for representing and
reasoning over spatio-temporal information in OWL. Various

aspects of it has been discussed in [8], [10]. Building-upon
well established standards of the semantic Web (OWL 2.0,
SWRL) SOWL enables representation of static as well as of
dynamic spatio-temporal information. Both 4D-fluents and the
N-ary models for the representation of temporal information
are supported. The user is opted between a point-based and
an interval-based representation. Representing both qualitative
temporal and spatial information (i.e., information whose
temporal or spatial extents are unknown such as “left-of”
for spatial and “before” for temporal relations) in addition
to quantitative information (i.e., where temporal and spatial
information is defined precisely) is a distinctive feature of
SOWL.

A temporal relation can be one of the 13 pairwise disjoint
Allen’s relations of Fig. 4. Definitions for temporal entities
(e.g., instants and intervals) are provided by incorporating
OWL-Time into the same ontology. Each interval (which is
an individual of the ProperInterval class) is related with
two instants (individuals of the Instant class) that specify
it’s starting and ending points using the hasBegining and
hasEnd object properties respectively. In turn, each Instant
can be related with a specific date represented using the
concrete dateT ime datatype. One of the before, after or
equals relations may hold between any two temporal instants
with the obvious interpretation. In fact, only relation before is
needed since relation after is defined as the inverse of before
and relation equals can be represented using the sameAs
OWL keyword applied on temporal instants. In this work,
for readability we use all three relations. Notice also that,
property before may be also qualitative when holding between
time instants or intervals whose values or end points are not
specified. This way, we can assert and infer facts beyond
the ones allowed when only instants or intervals with known
values (e.g., dates) or end-points are allowed.

ji

Meets(i,j)

Before(i,j)

Overlaps(i,j)

Starts(i,j)

During(i,j)

Finishes(i,j)

Equals(i,j)

Inverse RelationRelation

After(j,i)

MetBy(j,i)

OverlappedBy(j,i)

StartedBy(j,i)

Contains(j,i)

FinishedBy(j,i)

Fig. 4: Allen’s Temporal Relations.

Reasoning in SOWL is realized by introducing a set of
SWRL6 rules operating on temporal relations. The reasoner
is capable of inferring new relations and checking their
consistency, while retaining soundness, completeness, and
tractability over the supported sets of relations.Reasoners that
support DL-safe rules such as Pellet7 can be employed for

6http://www.w3.org/Submission/SWRL/
7http://clarkparsia.com/pellet/



inference and consistency checking over temporal relations.
For more details on the implementation of the reasoner the
reader is reader is referred to [7], [10]. The SOWL reasoner
is fully incorporated within the CHRONOS.

III. CHRONOS

CHRONOS is a tab plug-in for Protégé version 4.1 that
facilitates the creation and editing of temporal ontologies. It
is compatible with the OWL DL and OWL 2.0 specifications.
The user has the option to create a new temporal ontology
from (i.e., starting with an empty ontology) or, convert an
existing OWL ontology to temporal. In the later case, the
user can select classes to be converted to temporal (in which
cases all data properties, object properties and individuals
associated with this class are also converted to temporal). Each
class is converted to temporal following the N-ary relations
approach discussed in Sec. II. However, the user need not
be familiar with details of the model or of the conversion
mechanism nor these information is visible to the user (i.e.,
CHRONOS displays temporal information similarly to static).
In order to view all the details of the resulting temporal
representation (including any intermediate classes added by
the N-ary relations model) the user can select to view the
ontology within the standard Protégé Tab. It is always possible
to switch between the two viewing modes at any time (i.e.,
the standard Protégé Tab and CHRONOS) and also continue
working with the ontology with any mode. Nevertheless,
working with temporal ontologies within the standard (static)
Tab, although feasible, requires good knowledge of the N-ary
model and is not recommended.

CHRONOS allows the user to create a new individual
related with a temporal property, add temporal object or data
property assertions to existing individuals, or edit the time
intervals during which the temporal property assertions hold.
The user does not have to intervene with the intermediate
objects or with their relationships, making the manipulation
of temporal relations between individuals as easy as the
manipulation of the static ones. Static object or data properties
can be created or edited as usual but, in addition, they can
be easily converted to temporal. New temporal object or data
properties can be added between individuals.

Temporal properties can be expressed qualitatively or quan-
titatively by specifying specific temporal values for time in-
stants or intervals. Cardinality constraints and property restric-
tions on temporal properties can be checked for consistency
as well or, new relations (static or temporal) can be inferred
from existing ones simply by running Pellet (which in turn
calls for the underlying reasoner implementation in SWRL of
SOWL).

In order to implement the changes suggested by the N-ary
Relations model, the following new objects are introduced into
the ontology.

• Event: the class that represents the N-ary property.
• during: an object property that relates the event to the

time interval during which it holds.

• participatesIn:, an object property that relates the in-
dividuals that participate in an event, to that specific
event individual. Object properties that are converted to
temporal become sub-properties of this property.

• overlaps:, an object property that relates two time inter-
vals. This property implies that those time intervals, in
some way overlap to each other.

Converting an ontology from static to dynamic requires a lot
of changes. Different types of entities (e.g., object properties,
data properties) are handled is a different way. Particular
emphasis is given on maintaining the semantics of these
entities, after they are converted to temporal. In the following,
we describe the way CHRONOS handles different kinds of
OWL entities:

a) Object Properties: The representation of a temporal
object property, according to the N-ary Relations model, sug-
gests that an intermediate object (instance of the Event class)
is introduced between the subject and the object of the static
object property. This object appears as both, an object and a
subject in two triples, whose predicate is the specific object
property and together represent the temporal relationship. To
make this possible, the static property’s domain and range
have to be modified. The dynamic property’s domain/range
will be the union of the static property’s domain/range and
the Event class. Moreover, the converted object property is
made a sub-property of the participatesIn property. The Event
class is related to the time interval class(Interval) with the
object property during. In the example of Fig. 3 the domain
of the static object property worksFor is class Employee. After
conversion, the domain of the dynamic object property will be
the anonymous class (Employee OR Event), that represents the
union of the classes Event and Employee. The static property’s
range is modified respectively, from Company to (Company
OR Event).

b) Data Properties: Data properties are handled by
CHRONOS similarly to object properties. The dynamic data
property’s domain is the union of the static property’s domain
and the Event class. The main difference with the case of
object properties is that the range cannot be the union of a
data type and the Event class8. To overcome this problem,
we create an object property named by the data property, and
followed by “OP”. This object property will relate the static
data property’s domain to the Event class. This is also made
a sub-property of the participatesIn object property. The data
property with the modified domain, will connect the event to
the data type. As in object property conversion, the Event is
related to the Interval with the during object property. Fig. 5
illustrates an example showing how the temporal data property
hasPrice is converted to temporal (e.g., in the case where a
produce the price of a product changes later in time).

c) Individuals: Individuals represent objects in the do-
main of interest. For example, “John” is an individual of

8In OWL DL there is a distinction between OWL Data Types and OWL
Classes. OWL Full allows the union of data types and classes. Proteégé and
OWL API support OWL DL in full but not OWL Full expressiveness.



Fig. 5: Example of a temporal data property using N-ary
Relations.

the class “Person”. The statement “John has lived from
1920 to 1998” does not require a temporal property for its
representation. However, when a property evolves with time,
such as in the statement “John has lived in Athens from 1950
to 1985”, the property livesIn is a temporal property that
holds during a specific time interval. John still lived after
the year 1985, but in a different place. In this case, temporal
relations are defined in terms of relations between individuals
rather than temporal individuals (i.e., temporal properties).
When a property is converted to temporal, all the triples that
contain this property are converted too. For each triple in the
ontology, a new instance of the Event class is created and
introduced between the subject and the object, as explained
in subsections III-0a and III-0b. This event individual is
connected to a TimeInterval instance with the during object
property. The TimeInterval individual is related to two Instant
individuals, one that represents the starting point of the interval
and one that represents the ending point of the interval. Each of
these Instant individuals are connected to a dateTime data type
with the data property inXSDDateTime. Fig. 6 illustrates the
individuals and their relations for a temporal object property
“worksFor” holding during a certain temporal interval.

Fig. 6: Example of a temporal object property between indi-
viduals.

A. Classes

Classes provide an abstraction mechanism for grouping
resources with similar characteristics. Every OWL class is
associated with a set of individuals, called the class exten-
sion. The individuals in the class extension are called the
instances of the class. A class has an intensional meaning
(the underlying concept) which is related but not equal to
its class extension. Thus, two classes may have the same
class extension, but still be different classes. Similarly to

individuals, classes cannot be converted to temporal. So, when
we use the term “convert a class”, we refer to the object and
data properties that relate to this class. More specifically, when
a class is converted to temporal in CHRONOS the entities
that are affected are: (a) the object and data properties that
relate members of the selected class, (b) the object and data
properties where this class appears as a Domain and (c) the
restrictions where one of these object or data properties appear
in. Summarizing “class conversion” is just a more convenient
way to convert multiple object and data properties together to
temporal.

IV. DEALING WITH CARDINALITY CONSTRAINTS AND
PROPERTY RESTRICTIONS

OWL classes are described through ‘class descriptions’. A
property restriction is a special kind of class description. It
describes an anonymous class, namely a class of all individuals
that satisfy the restriction. OWL distinguishes between two
kinds of property restrictions: value constraints and cardinal-
ity constraints. CHRONOS enables the addition of temporal
constraints to ontologies. A temporal constraint can be added
to the active ontology either as a complex class description,
or as an SWRL rule. In the first case, the constraint can be
applied as a necessary and sufficient condition. In the case of
a SWRL rule constraint though, it can only be applied as a
necessary condition.

A. Value Constraints

d) owl:allValuesFrom: This constraint
owl:allValuesFrom is a built-in OWL property that links
a restriction class to either a class description or a data range.
It describes a class of all individuals for which all values
of the property are either members of the class extension of
the class description or are data values within the specified
data range. In the case where the property is temporal, the
form of the constraint is different. The restriction is used to
describe a class of all individuals for which all values of the
property under consideration are those members of the Event
class that are connected with the concerned property to either
members of the class extension of the class description or
are data values within the specific data range. For example, a
restriction on a class “Company” could be

employs only Employee
If the object property employs is temporal, the restriction
becomes:

employs only (Event and (employs only Employee))
e) owl:someValuesFrom: This constraint links a restric-

tion class to a class description or a data range. A restriction
containing an owl:someValuesFrom constraint describes a class
of all individuals for which at least one value of the property
concerned is an instance of the class description or a data
value in the data range. In the case of a temporal property,
this constraint describes a class of individuals for which, at
least one value of the property is an Event individual which
is connected using the property with an instance of the class



description or a data value in the data range. For example, the
following defines a restriction on class “Company”:

employs some Employee
If the object property employs is temporal, the restriction
becomes:

employs some (Event and (employs some Em-
ployee))
f) owl:hasValue: This constraint links a restriction class

to a value V, which can be either an individual or a data value.
A restriction containing a owl:hasValue constraint describes
a class of all individuals for which the property concerned
has at least one value semantically equal to V (it may have
other values as well). Our approach for the temporal form of
that restriction is that it describes a class of all individuals
for which the property concerned has at least one value
semantically equal to V, for each event that these individuals
participate in. This temporal constraint is applied with the
addition of an SWRL rule that to the ontology. For example,
an owl:hasValue restriction on a class “Company” is:

employs value John
where “John” is an individual of the class Employee. The
SWRL rule that is assested to the ontology for applying the
temporal constraint is:

Company(?x)∧participatesIn(?x, ?e)∧Event(?e) →
employs(?e, John)∧employs(?x, ?e)

meaning that for each event that an individual of the class
“Company” participates in, that company individual is also
related to the Employee ‘John’ with the temporal object
property employs.

B. Cardinality Constraints

In OWL, like in RDF, it is assumed that any instance of a
class may have an arbitrary number (zero or more) of values
for a particular property. To make a property required (at least
one), or to allow only a specific number of values for that
property, or to insist that a property must not occur, cardinality
constraints can be used. OWL provides three constructs for
restricting the cardinality of properties locally within a class
context.

g) owl:maxCardinality: This constraint links a restric-
tion class to a data value belonging to the value space of
the XML Schema datatype nonNegativeInteger. A restriction
containing an owl:maxCardinality constraint describes a class
of all individuals that have at most N semantically distinct
values (individuals or data values) for the property concerned,
where N is the value of the cardinality constraint. Syntac-
tically, the cardinality constraint is represented as an RDF
property element with the corresponding rdf:datatype attribute.
In CHROROS, maxCardinality constraint when interpreted as
temporal properties describes a class of all individuals that
have at most N semantically distinct values at the same time,
for the property concerned. This temporal constraint is applied
with the addition of a SWRL rule to the ontology. For example,
the owl:maxCardinality constraint in Manchester syntax is:

employs max 2 Employee

It implies that an individual of the class ‘Company’ cannot be
related to more than two individuals of the class “Employee”
with the object property employs. The SWRL rule that is added
to the ontology to apply the temporal version of the constraint
is:

Event(?e0) ∧Event(?e1) ∧Event(?e2)
∧Company(?x) ∧Employee(?y0)
∧Employee(?y1)∧Employee(?y2)∧during(?e0,
?i0)∧during(?e1, ?i1) ∧during(?e2, ?i2)
∧overlaps(?i0, ?i1) ∧overlaps(?i0, ?i2)
∧overlaps(?i1, ?i2) ∧employs(?e0, ?y0)
∧employs(?e1, ?y1)
∧employs(?e2, ?y2) ∧employs(?x, ?e0)∧employs(?x,
?e1)
∧employs(?x, ?e2)∧DifferentFrom(?y0, ?y1)
∧DifferentFrom(?y0, ?y2) ∧DifferentFrom(?y1, ?y2)
→ Nothing(?x)

This means that if there are three different individuals of the
class “Employee” that relate through the temporal property
employs to the same individual of the class “Company”, and
the time intervals associated with those temporal properties
pairwise overlap.

h) owl:minCardinality: This constraint
owl:minCardinality links a restriction class to a data
value belonging to the value space of the XML Schema
datatype nonNegativeInteger. A restriction containing an
owl:minCardinality constraint describes a class of all
individuals that have at least N semantically distinct values
(individuals or data values), where N is the value of
the cardinality constraint. Syntactically, the cardinality
constraint is represented as an RDF property element with
the corresponding rdf:datatype attribute.

In CHRONOS the temporal version of this constraint de-
scribes a class of all individuals that are connected to at
least N members of the Event class with the property at
hand. The event individuals have at least one value for the
property concerned. OWL adopts the open world assumption,
thus if a member of a class restricted with a minCardinality
constraint has less than N distinct values for the concerned
property, no inconsistency will result. An example of an
owl:minCardinality constraint would be:

employs min 2 Employee
The temporal version of that minCardinality constraint is:

employs min 2 (Event and (employs some Em-
ployee))

Actually this interpretation of the constraint does not imply
that the individuals of the class “Company” have at least
2 employees at the same time, but just that they have two
employees in their existence, connected with the temporal
property employs. This is a less strict application of the right
constraint which would require all the company individuals
to have at least 2 employees at the same time. This was the
only temporal interpretation of the minCardinality constraint
we were able to implement, given the current expressiveness
of property restrictions and SWRL rules.



i) owl:cardinality: This constraint links a restriction
class to a data value belonging to the range of the XML
Schema datatype nonNegativeInteger. A restriction containing
an owl:cardinality constraint describes a class of all individu-
als that have exactly N semantically distinct values (individuals
or data values) for thes property at hand, where N is the
value of the cardinality constraint. Syntactically, the cardi-
nality constraint is represented as an RDF property element
with the corresponding rdf:datatype attribute. The temporal
version of this constraint in CHRONOS describes a class of
all individuals that are related to Event individuals with the
property concerned and those event individuals have exactly
N semantically distinct values for the property concerned. An
example of an owl:cardinality constraint would be:

employs exactly 2 Employee
It implies that an individual of the class “Company” can be
related to exactly two individuals of the class “Employee” with
the object property employs. The SWRL rule that would be
added to the ontology to apply the temporal version of the
constraint would be:

Event(?e0) ∧Event(?e1) ∧Event(?e2)
∧Company(?x) ∧Employee(?y0)
∧Employee(?y1)∧Employee(?y2)∧during(?e0,
?i0)∧during(?e1, ?i1) ∧during(?e2, ?i2)
∧overlaps(?i0, ?i1) ∧overlaps(?i0, ?i2)
∧overlaps(?i1, ?i2) ∧employs(?e0, ?y0)
∧employs(?e1, ?y1)
∧employs(?e2, ?y2) ∧employs(?x, ?e0)∧employs(?x,
?e1)
∧employs(?x, ?e2)∧DifferentFrom(?y0, ?y1)
∧DifferentFrom(?y0, ?y2) ∧DifferentFrom(?y1, ?y2)
→ Nothing(?x)

This rule would result in inconsistency if an individual of
the class “Company” was related to more than two instances
of the class “Employee”, with the temporal object property
employs, but not if it was related to only one ‘Employee’
individual. In that case, the behavior of the temporal versions
of the maxCardinality and the cardinality constraint coincides.

C. Global Cardinality Constraints on Properties

j) owl:FunctionalProperty: A functional property is a
property that can have only one (unique) value y for each
instance x, i.e. there cannot be two distinct values y1 and y2
such that the pairs (x, y1) and (x, y2) are both instances of this
property. Both object properties and datatype properties can be
declared as “functional”. For this purpose, OWL defines the
built-in class owl:FunctionalProperty as a special subclass of
the RDF class rdf:Property. A temporal functional property
can have only one value in each time interval for which the
property holds. This is realiazed by adding a SWRL rule to the
ontology. For the temporal property employs to be functional,
the rule is:

Event(?e1)∧Event(?e2)∧during(?e1, ?i1) ∧
during(?e2, ?i2)
∧overlaps(?i1, ?i2) ∧employs(?e1,

?y1)∧employs(?e2, ?y2)
∧employs(?x, ?e1) ∧employs(?x, ?e2)
∧DifferentFrom (?y1, ?y2)
→ SameAs (?y1, ?y2)
k) owl:InverseFunctionalProperty: If a property is de-

clared to be inverse-functional, then the object of a
property statement uniquely determines the subject (some
individual). More formally, if we state that P is an
owl:InverseFunctionalProperty, then this asserts that a value
y can only be the value of P for a single instance x, i.e. there
cannot be two distinct instances x1 and x2 such that both pairs
(x1, y) and (x2, y) are instances of P. When a temporal property
is inverse-functional the object uniquely determines the subject
for each time instant, i.e. there can be two instances x1, x2
such that (x1, y, interval1) and (x2, y, interval2) are instances
of P as long as the interval1 and interval2 do not overlap. The
SWRL rule to make the temporal property worksFor inverse-
functional is:

Event(?e1)∧Event(?e2)∧during(?e1, ?i1) ∧
during(?e2, ?i2)
∧overlaps(?i1, ?i2) ∧worksFor(?e1,
?y)∧worksFor(?e2, ?y)
∧worksFor(?x1, ?e1) ∧worksFor(?x2, ?e2)
∧DifferentFrom(?x1, ?x2) → SameAs (?x1, ?x2)

D. Negative property assertions

A negative property assertion is a feature introduced by
OWL 2 and it is a kind of restriction applied on individuals,
not allowing them to have a specific value (individual or data
value). More formally, a negative property assertion between
the individual x, the value y, connected with the property P
asserts that there cannot be an instance of the property such
as P(x,y). A temporal negative property assertion restricts an
individual x in a way that it cannot be connected with a
temporal property P to a specific value y during a time interval
interval1, thus the P(x,y,interval1) cannot be an instance of the
temporal property P. The SWRL rule added to the ontology
would be:

Event(?e)∧during(?e, ?i)∧overlaps(?i, interval1)
∧employs(?e, John)∧employs(Company1, ?e)
→ Nothing(Company1)

This rule forbids the individual “Company1” to employ “John”
during any time interval that somehow overlaps with the
specified time interval “interval1”.

E. Transitive Properties

When a property is defined to be transitive, this means that
if a pair (x, y) is an instance of P, and the pair (y, z) is an
instance of P, then we can infer that the pair (x, z) is also an
instance of P. The instances of the properties are considered
to hold for a specific time interval. If a temporal property
P is transitive and (x, y, interval1) is an instance of P and
(y, z, interval2) is an instance of P, then we can infer that
(x, z, interval1∩interval2) is also an instance of P. The SWRL
expressiveness though does not allow the creation of instances



of classes. Thus, the creation of such a rule is not possible.
In our implementation the transitivity between instances of a
temporal property takes place only if those instances hold for
same time intervals. The SWRL applying that effect on the
temporal property worksFor, would be:

Event(?e1)∧Event(?e2)∧during(?e1,
?i1)∧during(?e2, ?i2)
∧worksFor(?e1, ?y)∧worksFor(?e2,
?z)∧worksFor(?x, ?e1)
∧worksFor(?y, ?e2)∧intervalEquals(?i1, ?i2)
∧DifferentFrom (?y, ?z) → worksFor(?x, ?e2)

V. IMPLEMENTATION

CHRONOS is a plug-in used for representing temporal
information in Protégé. It requires a vocabulary that describes
temporal concepts. Our version of OWL-Time distributed with
CHRONOS provides this vocabulary along with a set of
SWRL rules, developed by Batsakis [10], that allow reasoning
over temporal relations and temporal concepts. The first time
CHRONOS is invoked for converting a new static ontology to
temporal, it checks if the active ontology is merged with the
OWL-Time ontology. If it is not, a pop-up window will appear,
prompting the user to merge the ontology with the OWL-
Time ontology. The user may select not to merge the active
ontology. In that case CHRONOS will add to the ontology only
the OWL entities required for the representation of temporal
relationships, but will not provide any reasoning capabilities
or consistency checking over the temporal concepts of the
ontology. For details on the algorithms for converting static
ontologies to temporal along and for instructions on using
CHRONOS the reader is referred to [11].

VI. CONCLUSIONS AND FUTURE WORK

We introduce CHRONOS a tab plug-in for Protégé editor
that facilitates the creation and editing of temporal OWL 2.0
ontologies. The temporal concepts as well as the properties
that evolve over time are represented by means of the N-
ary Relations model. CHRONOS enables the use of restric-
tions on temporal properties, which have different semantical
meaning than those applied on static properties. The user
does not have to be familiar with the peculiarities of the
temporal representation model, thus making the manipulation
of temporal entities as easy as if they were static. Enhancing
CHRONOS with querying support on temporal ontologies is
an interesting issue for future work. We also planning to
support reasoning beyond the base relations of each calculi.
Dealing with scalability issues for large scale applications
(i.e., ontologies) are also important issues for future research.
Finally, we are planning to provide support for OWL 2
restrictions on spatial relations (e.g., “a country A borders
with exactly 3 other countries”).
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